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This paper reports measurements of turbulent quantities in an axisymmetric wall 
jet subjected to  an adverse pressure gradient in a conical diffuser, in such a way 
that a suitably defined pressure-gradient parameter is everywhere small. Self- 
similarity is observed in the mean velocity profile, as well as the profiles of many 
turbulent quantities at sufficiently large distances from the injection slot. Auto- 
correlation measurements indicate that, in the region of turbulent production, 
the time scale of v fluctuations is very much smaller than the time scale of 
u fluctuations. Based on the data on these time scales, a possible model is pro- 
posed for the Reynolds stress. One-dimensional energy spectra are obtained for 
the u, v and iu components a t  several points in the wall jet. It is found that self- 
similarity is exhibited by the one-dimensional wavenumber spectrum of 
qz ( = u2+ v2+;2), if the half-width of the wall jet and the local mean velocity are 
used for forming the non-dimensional wavenumber. Both the autocorrelation 
curves and the spectra indicate the existence of periodicity in the flow. The rate 
of dissipation of turbulent energy is estimated from the? spectra, using a slightly 
modified version of a previously suggested method. 

- - -  

1. Introduction 
Turbulent wall jets find application in many practical situations, such as film 

cooling, boundary-layer control, etc. There are several investigations reported on 
wall jets. Most of these investigations pertain to the study of the mean flow 
quantities in the wall jet. Only in a few cases have data on the turbulence 
quantit,ies been reported. Kruka & Eskinazi (1964) reported data on turbulent 
intensities and the turbulent shear stress in a plane wall jet subjected to zero 
pressure gradient. Kacker & Whitelaw ( 1968) also studied zero-pressure-gradient 
plane wall jets. They obtained, in addition to t,urbulent intensities and turbulent 
shear, the integral length-scale distribution across the wall jet, by making cross- 
correlation measurements. Newman et al. (1972) reported measurements of u’ 
along the centre-line of a three-dimensional wall jet originating from a circular 
orifice. The author is not aware of any report on turbulence measurements in 
plane or axisymmetric wall jets subjected to adverse pressure gradients. Rama- 
prian (1973) reported a study of the mean flow properties of axisymmetric wall 
jets in conical diffusers. The wall jet in this study was obtained by injecting 
into tthe main flow a stream of high velocity fluid tangentially along the wall of 
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FIGURE 1 .  Layout of the apparatus. 2=2Oft approx.,h=4ft. A ,  test diffuser; U ,  injection 
slot; C, annualrtr settling chamber; D, hose pipes; E, contraction nozzle; P ,  orifice meter; 
C, secondary air; H ,  sixteen-mesh screens; I, set,tling chamber; J ,  honeycomb ; h-, de- 
celerating duct; L, main air. 

the diffuser, through an annular slot situated a t  t,he inlet. Different wall-jet 
configurations were obtained by using different injection velocities and diffusers 
of different half-angles. It was found that, in general, wall-jet development was 
too complicated to be described by universal algebraic expressions, and required 
the solution of the governing differential equation in each case. But it \+-as founcl 
that, under one condition, the wall-jet behaviour exhibited a relatively simple 
universal trend. This condition was that a non-dimensional pressure-gradient 
paramet’er 

should be ‘small’ (say 5 4). (y jn  is the distance of the point of maximum velocity 
from the wall; 7,, is the wall shear stress; and dp/dx is the longitudinal pressure 
gradient.) Under this condition, the behaviour of the wall jet could be correlated 
with that of the zero-pressure-gradient, plane wall jet of Iiruka R- Eskinazi, 
using suitably stretched parameters to account merely for the geometry of the 
diffuser. This observation provided the inspiration for the present study. While 
the value of in this special case is small, it does not necessarily mean that clp/clz 
is small. I n  fact, such wall jets can be associated with fairly large pressure 
gradients. 

2. The present investigation 
The present paper reports a detailed study of an axisymmetric wall jet sub- 

jected to an adverse pressure gradient, in such a manner that p is everywhere 
roughly 2 .  The pressure gradient dpldz is not arbitrary, but decided by the 
interaction of the boundary layer and ‘core’ flow inside the diffuser. This inter- 
action itself was discussed by Nicoll & Ramaprian (1970); and it will not be 
discussed again here. It is relevant to mention that it appears that, a t  small values 
of p, the pressure gradient gets so set-up as to result in a wall jet which behaves, 
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in some sense, like a zero-pressure-gradient plane wall jet. It will be shown in 
this paper that such a wall jet exhibs approximate self-similaritity, in both mean 
and turbulent properties, a t  sufficiently large distances from the slot. Such a wall 
jet will be referred to as an ‘equilibrium’ wall jet. It provides an opportunity to  
study the equilibrium structure of turbulence in highly sheared wall flows. It is 
expected that the results obtained here for axisymmetric flow will be generally 
applicable to plane flows, as well. 

2.1. Experimental apparatus 
The present study was confined to a wall jet developed in a diffuser of half-cone 
angle 5’. The diffuser had an inlet diameter of 12 in. and a nominal area ratio of 3. 
The inlet velocity of air flowing through the diffuser was about 70ft s-l and the 
velocity of the injected air through the quarter-inch annular slot was about 
120 ft  s-l. A schematic layout of the experimental apparatus is shown in figure 1. 
A more detailed description of the apparatus appears in Ramaprian (1969, 1973). 
Hot-wire traverses were made a t  several longitudinal stations, in a direction 
normal to  the diffuser wall. These stations correspond to x/t, values of 10, 22, 
46, 70, 94 and 118, respectively (t,  is the width of the slot.) 

2.2. Instrumentation 
The mean velocity profiles in the wall-jet layer were measured using a total head 
tube of 0.028in. outside diameter and wall static taps. The wall shear stress was 
measured using a Preston tube of a diameter sufficiently small that  it was fully 
submerged in the buffer layer, where the law of the wall has been found not to  be 
different from that in fully-developed pipe flow. (See Kruka & Eskinazi 1964.) 
Also, the Preston tube data agreed, to  within 5 yo, with the values obtained by 
extrapolation to the wall of the shear-stress data obtained from hot-wire 
measurements. The mean velocity data obtained from the total head tube were 
1at)er used to calibrate the readings of the hot-wire probe at each station. The hot- 
wire probe was essentially used to measure turbulence quantities only. The hot- 
wire equipment consisted of two channels of DISA constant-temperature 
anemometers, each with a linearizer. A miniature X-probe was used to measure 
the turbulence intensities u’, v‘ and w’ and the Reynolds stress -puV. A DISA 
correlator was used to  isolate the u and 2) (or u and w) signals by the usual method 
of summing and differencing the instantaneous outputs of the two channels, which 
were proportional to u + v  and u-v (or (u+w and u-w), respectively. The 
wires were made as nearly identical as possible. The sensitivities of the two wires 
were finally equalized by adjusting the overheats of the two wires slightly. The 
probe was aligned in the stream by ensuring that the mean outputs of the two 
channels did not differ from each other by more than 1 % anywhere across the 
wall jet. No correction was applied for the effect of wire separation on the mea- 
sured values of u, v and w. Since the wire separation was of the order of the 
microscale of turbulence, no significant errors are expected in the measurements 
of intensities, the integral time scales or energy spectra, in the wavenumber range 
discussed in this paper. The Reynolds stress was obtained from the difference 
between (u + v)2 and (u - v ) ~ .  
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FIGURE 2. Block diagram of instru~nentation. 

The data were processed according to two different schemes, as shown in the 
block diagram in figure 2. Scheme (a )  consisted of an r.m.s. meter for obtaining 
r.m.s. values, a B & I< spectrum analyser (with a range of 2-20000Hz and a 
bandwidth of & octave) for spectrum analysis, and a Princeton Signal Correlator 
for autocorrelation study of the u, v and w signals. The arrangement was used 
only in the initial stages, to check the satisfactoriness of scheme ( b ) .  

Scheme ( b )  consisted of recording the u and v (or 1: and w, as the case limy be) 
signals from the DISA correlator on a magnetic tape using a Hewlett-Psckard 
FM tape recorder (bandwidth 0-10kHz) a t  a tape speed of 60in.s-1. Before 
recording, the signals were passed through a sharp cut-off low-pass filter, set to 
cut off nominally a t  10 kHz, to limit the bandwidth of the signal. This filter 
setting, which give a flat frequency response up to 6 kHz, was selected after 
ensuring, during preliminary studies, that it had no observable effect on the r.m.s. 
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FIGURE 3. The longitudinal distribution - -  of some of the wall-jet parameters. 
-O-, fle/oo; -O-, um/uo; -A-, yt / t , ;  -A-, TU,/pa: .  

values of the signals. The signals were later played back at a quarter of the 
recording speed. The output signal was digitized, stored on disc, and later 
processed on an IBM 360144 computer, using an IBM 1827 data-processing 
system. Usual precautions were taken to check and control any distortion or 
deterioration of the signal in the course of recording and play-back. The digitiza- 
tion of the signal was done by an analog-digital converter, driven at a sampling 
frequency of 10 kHz, and set to sample the u and v (or u and w) signals alternately. 
This amounted to a sampling frequency of 5 kHz for each component, in terms of 
the play-back speed, and corresponded to a real-time sampling frequency of 
20 kHz of the recorded signals. With this sampling frequency, the spectrum in the 
range of 6-10 kHz would be aliased by the spectrum in the range of 10-14 kHz. 
The low-pass filter set at  1OkHz ensured that error due to this aliasing was 
negligible. 

Digital analysis was made using 3000 samples in a batch, and subsequently 
averaging over 30 batches. These 30 batches were selected at uniform time 
intervals over 30 s of real time. This procedure was adopted to combine long-time 
averaging with practical feasibility, in terms of computer time and memory size. 
D.c. and very low frequencies were removed by digital filtering, to avoid distor- 
tions in spectral density in the neighbourhood of zero frequency, as well as to 
improve the stability of statistical estimates. Autocorrelation coeficients were 
obtained by calculating the time-averaged lagged products for various time- 
delays. Power spectra were obtained directly from the signal samples, using the 
technique of discrete fast Fourier transform. The accuracies of these calculations 
will be discussed later, in $6.  It will be mentioned here only that the data- 
processing scheme was designed in accordance with standard practice, so as to 
obtain the best possible accuracy with the available data-processing facility. 

21 F L M  71 
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FIGURE 4. Distribution of the mean and turbulent quantities across the 
wall jet a t  z/te = 94. 

(See e.g. Blackman & Tukey 1958.) The spectrum and correlationresults obtained 
digitally were compared in a few test cases with the results obtained from the 
procedure mentioned in scheme (a) ,  viz. from the spectrum analyser and signal 
correlator. They were found satisfactory. 

3. Results 
Figure 3 shows the longitudinal distribution of some of the important gross 

parameters of the wall jet, such as the free-stream (diffuser centre-line) velocity 
Uc, the maximum velocity in the wall jet u,n, the half-width of the wall jet y3 
and the local skin-friction coefficient &Cf. (y@ defined as the distance from the 
wall to the point where the velocity is &[qn + Urnin]. urnin is the minimum velocity 
in the section. +Cf is defined as rw/pU:. ue and urn have been normalized with 
respect to Do, the free-stream velocity in the plane of the slot exit.) The value of 
the pressure-gradient parameter /3 for this flow was everywhere about 2, 
Ramaprian (1  973) showed that the wall-jet development under this condition 
could be correlated with that of a two-dimensional plane wall jet, using suitably 
stretched parameters. 
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FIGURE 5 .  Mean velocity distribution adjacent to the wall. xlt,: , 2 2 ;  A, 46; V , 70 ;  A, 94; 
0, 118. -, distribution c/u, = 5*5logyu,/v+ 11-2, from Ramaprian (1973). 

The distributions across the wall jet of the mean velocity 8, the three turbulent 
velocity components u', v' and w', and the Reynolds shear stress -puV were 
obtained a t  different longitudinal positions along the diffuser wall. However, only 
one set of typical profiles is shown in figure 4. From this figure, the following 
important observations can be made. 

(i) The turbulent shear stress attains a very large negative value inside the wall 
jet (more than twice the positive value a t  the wall). Reference to the literature 
indicates that, while the present wall jet behaves in itsgross features like the plane 
zero-pressure-gradient, two-dimensional wall jet of Kruka & Eskinazi or Kacker & 
Whitelaw, the shear stress in the present case reaches much larger negative 
magnitudes than in the other cases for the same ratio U,/V,, where q. is the 
velocity through the slot. The large negative shear stress in the present case is a 
result of the rapid deceleration of the main stream, causing a large difference in 
velocity across the jet-like outer region of the wall jet. Thus, the present wall jet 
reproduces the situation of a strong adverse pressure gradient; but it is so 
generated that it results in a low value of /I. 

(ii) The turbulent shear stress passes through zero a t  a distance from the wall 
slightly smaller than the distance of the point where the mean velocity attains 
its maximum. This fact has been observed in the other experiments on wall jets, 
also referred to previously. It presents some difficulty in using Boussinesq-type 
effective viscosity models to describe wall-jet behaviour. 

(iii) All the component,s of turbulent fluctuations reach a local maximum in the 
outer region of the wall jet a t  about the same point as that a t  which shear stress 
reachesits maximum negative value. Likewise, the turbulent energy attainsalocal 
minimum around the point where the shear stress is zero. The latter fact is more 
clearly observed from figures 7 and 8. 

The distribution of mean velocity adjacent to the wall is shown in a semi- 
logarithmic plot in figure 5. A nearly universal distribution is observed that 
agrees, to within 5 %, with the distribution. 

- -  

a/u*  = 5.5 log yu*/v + 11 -2 
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FIGURE 7. Distribution of 98 across the wall jet. Symbols as in figure 5. 

of Ramaprian (1973). It is particularly important to note that the additive 
constant in the log law is very much higher than the value for conventional 
boundary layers. 

Figures 6-8 present the distribution of the velocity 'defect ' ( g  - ge), the tur- 
bulent quantity p ( = u'2+ v'2+ w'2) and the Reynolds shear stress - p G ,  wherein 
the variables have been normalized using the outer-layer velocity and length 
scales u* and y4, respectively. From the three figures, it can be seen that the flow 
attains self-preservation over the outer region (y/y+ = 7 > 0-5, say) for sufficiently 
large values of .Itc. The mean velocity profile exhibits self-preservation at  smaller 
values of x/t ,  and 7 when compared with the and Ti5 profiles. These self-similar 
profiles indicate that the wall jet has attained a state of structural equilibrium, 
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FIGURE 8. Distribution of the Reynolds shear st,ress &cross the wall jet. 
Symbols as in figure 5. 

a t  least in the outer layer. This quasi-equilibrium makes it worthwhile to study 
the structure of this highly-sheared turbulent flow in somewhat greater detail. 
Something of this is reported in the rest of the paper. 

4. Implications of the phenomenological hypotheses 
The present data allow one to compare the implications and relative usefulness 

of commonly-used shear-stress hypotheses. Three such hypotheses are considered 
here. These are as follows. (i) The Prandtl mixing-length hypothesis 

(7 is the shear stress; and 1, is the mixing length at  any point). (ii) The Prandtl- 
Kolmogorov hypothesis (Kolmogorov 1942) 

(Ik is a length scale; and C,, is a universal constant). (iii) The Bradshw hypothesis 
(Bradshaw, Ferriss & Atwell 1967) 

- 
7 = paqa 

(a is a universal constant). 
(4.3) 
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FIGURE 9. Comparison of the calculated shear-stress distribution with measurements at 
x/t, = 118. , measurement; -, calculated from Prandtl mixing-length hypothesis, with 
K = 0.4 and h = 0.15; -----, calculated from Prandtl-Kolmogorov hypothesis, with 
I,: = Z,, and 17,' = 0.63; -.-.-, calculated from Bradshaw hypothesis, with a = 0.175. 

The hypotheses (4.1) and (4.2) are often used in boundary-layer calculations, 
along with a simple two-layer hypothesis for the distribution of the length scale, 
of the form 

1 = KY for 0 < y c A Y ~ / K ,  1 = hy+ for y 2 h y i t / ~ .  (4-4) 

(K and h are universal constants.) The implications of these hypotheses in the 
case of the present wall-jet flow are seen from figure 9, where the shear-stress 
distributions computed from (4.1) and (4.2), using the above two-layer length 
scale model, are compared with measurements a t  station x/t ,  = 118. The value 
of K was taken as 0.4; and I ,  was assumed to be equal to  I ,  everywhere. The values 
of h = 0.15 and C, = 0.63 were selected so as to  give the best fit to  the experi- 
mental data. It is seen that both the simple hypotheses do yield a reasonably 
satisfactory shear-stress distribution in the outer layer. I n  the wall layer, however, 
the hypotheses are seen to  be unsatisfactory. Also, though the gradient models 
cannot predict the observed non-zero shear stress a t  the point of maximum 
velocity, this is not very serious, as the shear stress is very small in this region. 

The shear-stress distribution calculated from (4.3) is also seen in figure 9. For 
this hypothesis to be applicable to the wall jet, one must attach the proper sign 
to  7 in it. It has been assumed here that 7 will have the sign of ag/ay. The value of 
u was taken as 0.175, which gave the best fit to the experimental data. The 
hypothesis is also seen to fare reasonably well in the outer region, but very poorly 
in the inner. 
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5. Autocorrelation measurements 
Wall-jet flow provides an opportunity of studying a highly-sheared flow with 

the following features. (i) The direction of the shear changes across the shear layer. 
(ii) There is a strong interaction between the wall and free shear flow. (iii) Con- 
siderable turbulence is generated sufficiently far from the wall that X-wire 
measurements can be made easily. 

The turbulent energy in the region of production is seen from figure 4 to be 
large, non-homogeneous and anisotropic. Thus, it was felt that it would be 
worthwhile to study how the length or time scales of the different components 
u’, v’ and w’ behaved across the wall jet. It would be particularly useful to know 
whether these scales also exhibit anisotropy and non-homogeneity, and, if so, 
whether a relevant and dominant scale can still be usefully identified. Further, 
such a study might lead to a little more information on the wall layer, which has 
been seen from figure 5 to behave differently from a conventional boundary layer. 

Lengt,h-scale measurements of u fluctuations in a wall jet were obtained by 
Kacker & Whitelaw (1 968) from measurements of space correlations. In  the 
present work, it was decided to obtain data on autocorrelation functions of u, v 
and 10 components of turbulence. The autocorrelation measurements are not a 
substitute for space-correlation measurements, however. I n  fact, from the present 
measurements, only three of the nine length scales at a point can be obtained. 
The decision to make autocorrelation measurements was made primarily 
because of the relative ease with which autocorrelation data could be obtained, 
especially when a digital data-processing facility was available. Incidentally, 
time-correlation measurements have the advantage that they involve single- 
point measurements, while space-correlation measurements require two-point 
measurements. Single-point measurement enables one to obtain a local scale 
a t  a point. Further, it eliminates the errors introduced by mutual probe inter- 
ference, inherent in multi-probe measurements. 

The autocorrelation coefficient for (say) the u component of the turbulent 
velocity a t  a, point (x, y), for a time separation T ,  is defined as 

&(x, Y, T) = u(x, Y, t )  u(x, Y, t + T ) / a x ,  Y). (5.1) 

(The overbar represents time averaging.) 
Autocorrelation data for u, v and 20 components were obtained a t  several points 

across the wall jet, at  two stations (x/tc = 22 and 118). More than 80 correlation 
curves were obtained in all. Only one typical set is shown in figure 10. At the 
scanning speeds used for digitization, the autocorrelation coefficient R could be 
obtained at time steps AT of 0.5 x s. If a typical inner-layer time scale T, is 
defined as 

the time step used corresponds to a non-dimensional time interval ATIT, in the 
range 1-6. The length of signal sampled was 80 ms in all the cases, which corre- 
sponds to a non-dimensional time in the range 1600-10000. Thus, digital 
sampling and analysis provides the possibility of high resolution and long length 
of the correlogram simultaneously (a feature not easily achieved with analog 

T, = v/u%, (5.2) 
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FIGURE 10. Autocorrelation curves of u‘, v’ and w’ at z/tc = 22 and y = 0.4in. -.-.-, 
R,; -, R,; ------, R,. Arrows indicate the ‘ last point’ on the correlation curve for 
computing the area under the curve. 

correlators). As mentioned already, each correlation curve was obtained as an 
average of 30 correlograms taken over a period of 30 s. For obtaining each corre- 
lation curve, averaging was done over a t,otal number of samples varying from 
30 x 1400-30 x 3000. The smaller value corresponded to a time lag of 80 ms, and 
the larger to  that of 0.05 ms. A rough estimate of the accuracy of the correlation 
data can be made by calculating e ,  the ratio of the standard deviation to the mean 
value of the correlation coefficient R. e is given approximately by t,he expression 

e = (1 + R-2)4/(2BT,)4. 

(See Magrab & Blomquist 1971. B is the bandwidth of the signal in hertz (10000 
in the present case); and T, is the total duration of the record (30s in the present 
case).) e works out to be about 0.025 for R = 0.05, indicating that the averaging 
procedure is fairly satisfactory. 

The following comments can be made about the correlat,ion curves. (i) As seen 
from the typical curves in figure 10, the correlation curves did not come out ;Ls 
smooth functions going to zero a t  large values of T, as is usually obtained from 
analog correlators. Quite a few of the curves exhibited negative loops. The loops 
were found to be particularly strong for v and w components. (ii) The typical 
curves in figure 10 also indicate the difficulty in the definition of an integral time 
scale. It was decided in the present study to  treat the point where the curvejrst 
crossed the x axis as the ‘last ’ point on the correlation curve. The area under the 
curve up to  this point was arbitrarily taken as the integral time scale of turbulence. 
The arrows in figure 10 indicate the ‘last’ point for each correlation curve. One 
can, of course, use other physically meaningful and consistent definitions for the 
ttime scale. The present definition has been chosen because it was felt that the 
curve up to  the first zero (i.e. the main lobe) represented the most significant part 
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FIGURE 11. The distribution of the time scales t,, t ,  and 1, across the wall jet. 
0 ,  z/tc = 22; 0. z/te = 118. 

of the correlation curve, and its area would therefore give a very significant time 
scale. It was also possible to compute the time scale unambiguously in all the 
cases using this definition. 

The integral time scales t,, t, and t, €or the two stations (x/tc = 22 and 118) &re 
plotted in figure 11. These time scales have been normalized, using a reference 
time scale y*/u*. It is seen that of the three scales only t, shows Reynolds number 
independence. Further, while no significant trend in the variation oft, and t, can 
be observed, there is a systematic (nearly linear) variation in to. In  fact, the trend 
is especially clear in the region which has the largest contribution to the total 
turbulent kinetic energy of the boundary-layer fluid. 

Another significant observation that can be made from figure 1 1  is the 
difference among the magnitudes of the time scales (especially t ,  and tv). This can 
be seen more clearly from figure 12, where the ratio t,/tv is plotted for the two 
stations. It is seen that, at  both stations, t,/tv has values of approximately 9-10 
close to the wall, and drops to a value approaching 2 as the shear decreases to zero. 
This means that in strongly sheared flows the lifetime of v fluctuations is very 
much smaller than that of the u fluctuations. Use of Taylor’s hypothesis for iso- 
tropic turbulence would leadusto expect tu/tv to be 2. Thevery large values of t,/tu 
in the strong shear regions can be qualitatively explained as follows 

One can regard turbulence produced from mean shear to be initially contained 
in u fluctuations. This energy is later partly transferred to the other modes, 
2, and w. This mechanism is fairly well accepted now. (See e.g. Rotta 1951.) It can 
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FIGURE 12. The distribution of t,/t, across the wall jet. ---n---, r/tc = 22; ---o---, 
.L./tc = 118; ---- , value of 2, for isotropic turbuleiice. 

be expected to be prevalent, in the present case, a t  least' a t  large distances from 
the slot. The Reynolds shear stress which represents the correlation between the 
u and v fluctuations is generated during the period of transfer of energy between 
t,hese mocks. It will now be hypothesized that the smaller time scale, viz. the time 
scale of the v fluctuations, corresponds to the duration of this transfer process. In  
other words, turbulent production occurs during these periods of duration t,. 
The lifetime of the u fluctuations does not appear to vary significantly over the 
region of production, though it  does depend upon the Reynolds number. The 
7~-v transfer process becomes stronger and more frequent in regions of strong 
shear, resulting in larger values of t,/tv. As the outer limit of the production region 
is approached, the energy extracted from the mean shear decreases, and the 
transfer process becomes weaker and weaker. On the basis of this reasoning, one 
can expect t ,  to  be an important parameter characterizing turbulent production. 
The observation that t ,  scales withu* and y4, the parameters with which all 
the other gross features of turbulence scale in the present case, points to t ,  being 
a very relevant parameter, a t  least in the region of turbulent production. 

The above argument leads to a possible model for the turbulent shear stress. 
The shear stress that represents the correlated portion of the u and v fluctuations 
will depend on the total turbulent kinetic energy, the strength of the 41-v transfer 
process (which is dependent on av/ay)  and the time scale of the transfer process 
(which has been seen to be t,). Hence, one can write 

- - 
uv = G{p, t,, ai7/ay}. 

uv/? = F{t,aU/ay}. 
Dimensional analysis yields 

- 

(5.3) 

(5.4) 

Figure 13 shows a plot of EE/?(t,av/ay) for the two stations x/tc = 22 and 118. 
While one must concede that the data show some scatter, it is still possible to  
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FIGURE 13. Dependence of Reynolds shear stress on t,aU/ay. A, x / tc  = 22; 0 ,  z/tc = 118. 
Hatching is done to bring out clearly the scatter in the measurements. 

notice a definite trend as indicated by the hatched line. The positive values of 
(t, ag/ay) obtained in the region very close to the wall may be somewhat in error, 
owing to  the uncertainty in the measurements of both t ,  and aufay. But the 
figure indicates that the model implied by (5.4) is not unrealistic. A few other 
comments can also be made about this figure. 

(i) Bradshaw's relation UV = a? seems to be applicable to a flow only if 
t,, agfay is constant across the flow. The constant of proportionality depends on 
the state of the boundary layer as represented by t, au/ay. 

(ii) The anomaly around au/ay = 0 still persists as in the phenomenological 
models, because of the au/ay term. But this is not a serious problem in practical 
calculations. 

(iii) The quantity t,aD/ay can be regarded as in some sense the ratio of the 
time scale ofturbulence to that of mean shear. Generation of correlated turbulence 
relative to the total turbulence, as indicated by Z/p, thus appears to  depend 
on this ratio. 

(iv) It can be seen from the figure that the boundary-layer-like inner region of 
the wall jet behaves differently from the jet-like outer region, in that the values of 
lU./?1 are smaller for the former for the same value of It,ag/ayI. The reduced 
correlation between the u and v fluctuations in the inner layer of the wall jet is 
presumably due to the special features of the wall jet, viz. the production of the 
bulk of turbulent energy in the outer layer (see figure 15), and the existence of 
considerable interaction between the inner and outer layers. The present data for 
positive values of aDpy are not, however, sufficiently exhaustive to reach a more 
definite conclusion. A more detailed study of this region, especially in thick wall 
jets, is probably worthwhile. 
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While the present limited data appear to support hypothesis (5.4), further 
experimental evidence from both wall jets and other shear flows is necessary to 
confirm its universality. It is for this reason that we refrain from giving a quanti- 
tative expression for P in (5.4) at this stage. But such an expression might 
eventually lead to a practically useful method for calculating wall-jet develop- 
ment. Of course, such a step presumes that one knows the distribution oft,, across 
the wall jet. One starting point would be to assume that the t, distribution in 
figure 11 is also valid for wall jets subjected to arbitrary pressure gradients. Then 
figures 11 and 13 would together provide the closure for the momentum equation. 
The extension of the scheme to other shear flows, however, depends to a great 
extent on the confirmation of the universality of (5.4) and the information 
available on the t, distribution. Further work in this direction is in progress. 

6. Turbulent energy spectra 
6.1. Spectrum measurements 

As already stated, frequency spectra of uf2, d2 and wf2  were obtained directly 
from the digitized data of u, v and w, using the technique offast Fourier transforms. 
2048 samples were used for the transform, out of the 3000 samples available in 
each batch. Stability was improved by hanning. Each spectrum was obtained as 
the average over 30 batches, spread over 30 s. The effective window width Be was 
about 13 Hz. The value of e for this case can be calculated from 

e NN (Be%)-* M 0.05. 

(See Magrab & Blomquist 1971.) The equivalent number of degrees of freedom, 
for an assumed chi-square distribution for the power spectral function, is 
2BeT, = 780. This corresponds roughly to confidence limits of f 0.35db (i.e. 
approximately f 8.5 yo) in the spectral function, based on a 90 % expectation, 

The spectra were obtained at several points across the wall jet, at the two 
longitudinal stations x/tc = 22 and 118. Define the wavenumber k, as 

k, = 2 ~ f / U .  

(f is the frequency.) Then one can compute the one-dimensional spectrum 
functions in wavenumber space from the frequency spectra. It is assumed here 
that Taylor’s relation is valid, in the form a/at = a/ax. Again, while more than 
40 wavenumber spectra were computed, only a typical set is presented in figure 14. 
In this figure, the spectrum function and wavenumber are normalized using? and 
yi1, respectively. The non-dimensional spectrum function $(y* k,) is defined in 
the usual way, so that 

and so on for d2, wr2 and p. 
Since the low-pass analog filter lowered the frequency response beyond 6 kHz, 

the spectral calculations could not, in many cases, be extended with accuracy 
far enough into the Kolmogorov range. But this does not affect the conclusions 
to be drawn from the spectra up to a frequency of 6 kHz. In  fact, the spectra shown 



h 

a- 
s? z 

Measurements in a turbulent axisymmetric wall jet 333 

lo-[ 10-4 10-1 

I 

U I I I I 1 1 1 1 1 1  

100 10' 

Y* 'Cl 
162 

FIGURE 14. One-dimensional ener,rry spectra at z/tc = 118 and y = 1.4in. ----, q5,a(ytkl); 
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The height of the vertical bar indicates the extent of uncertamty in the results. 

in figure 14 extend up to only 5 kHz. It was observed, that, with a few exceptions, 
the computed spectra generally indicated near-isotropy towards the high-wave- 
number end. The deviation in a few cases from this general trend (such as e.g. the 
wf2 spectrum in figure 14) is presumably due to errors in measurement a t  the 
high-wavenumber end. But no definite explanation can begiven for this. We shall, 
therefore, simply state that there appears to be a general tendency towards 
isotropy at the high-frequency end of the measured spectrum. 

Since, in the present case, turbulent energy production takes place over a 
substantial region away from the wall (up to 7 = 1-5), it  has been possible to 
obtain vf2 and wf2spectra at  a number of points in the region of production. This is 
normally difficult, if not impossible, in a conventional boundary layer. It is seen 
from figure 14 that the v f 2  and w'2 spectra exhibit a local maximum. This feature 
was observed in all the spectra. The maximum in the v ' ~  spectrum was observed 
a t  a non-dimensional wavenumber yt k, = kr x 2, in all cases. The existence of 
such a peak was not clearly observable in the u'2 spectra while the wavenumber 
k:, a t  which the peak occurred in the wf2 spectra, varied from 0.5 to 2.0. The 
existence of these peaks is also suggested by the autocorrelation curves in 
figure 10, and it indicates some kind of periodicity in the flow. It is possible that 
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this periodicity is due to the slot-tip vortices convected downstream by the flow. 
But it is interesting that the non-dimensional ‘eddy size’ Llyg, corresponding to 
the peak in the spectra, works out to be between 3 and 6 in most cases. ( L  is 
defined as 2nyq/k: .) This agrees approximately with the non-dimensional distance 
between high-frequency turbulent ‘bursts ’ observed by Rao, Narasimha 
& Badri Narayanan (1971) in a boundary layer. This fact suggests the 
alternative possibility that the humps in the spectra may indicat,e the high 
frequency turbulent ‘bursts’ now believed to be a characteristic feat,ure of 
turbulence production. (See also e.g. Kline et al. 1967.) Detailed study of the 
periodicity was not made in the present investigation, however. 

6.2. Dissipation rate from spectrum 

Lawn (1971) reported that a kind of isotropy, described by Bradshaw as ‘second 
class ’, is observable in pipe flows a t  Reynolds numbers considerably smaller than 
that required for obtaining a distinct equilibrium range in the spectrum. In this 
range of second-class isotropy, the shear-stress spectrum Eun(kl), while falling off 
rapidly, will have still an appreciable value while the energy spectra E,,z(k,) and 
Eu8(kl) exhibit near-isotropy. Even prior to this, the uP2 and v f 2  spectra start 
showing a k;b variation. Bradshaw found that, under this condition, 

Eu,(kl)  = K E ~ ( k l ) - ~  (6.2) 

is satisfied, where e is the dissipation rate and the non-dimensional spectrum 
functions E(k,)  are defined by the usual relations of the type 

etc. The value of K has been found to be 0.5-0.55 in a boundary layer. Lawn 
showed that this condition can be obtained in pipe flow, if the Reynolds number 
of turbulence Re, = u‘h,,/v 2 140. (Axu is the micro-length scale of the u fluctua- 
tions in the x direction.) His work indicated that (6.2)could conveniently be used 
for calculating the dissipation rate from spectrum measurements a t  frequencies 
lower than the dissipative range frequencies. 

It was felt that it  would be worthwhile to examine the present datain the light 
of the above. A line of slope - 3  is drawn in figure 14. It is seen from the figure 
that, in the region where the uf2 spectrum appears to have a -Q slope, there is no 
indication of the isotropy relation being satisfied among the three spectra. This 
was observed in most cases. Nevertheless, taking advantage of the fact that the 
- $ power variation would be exhibited even prior to the occurrence of ‘ second- 
class isotropy’, one can still seek to compute the rate of dissipation from this 
region of the spectrum. However, in view of the lack of isotropy, it was decided 
to use the? spectrum for this purpose, instead of the ut2 spectrum. It can be seen 
from figure 14 that the spectrum does indicate a -Q power variation over a 
range of wavenumbers. This feature was observed in all cases. All the measured 
q 2  spectra exhibited a - Q power variation over a part of the region 
- 

5 (Ygk,) 20, 
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FIGURE 15. Production and dissipation of turbulent kinetic energy across the wall jet. 

-0-, (-G/u",((au/ay)g&; -0-, ey,$u$ from (6.3). 

though the exact extent of the wavenumber range over which this trend existed 
was slightly different for different spectra. It was decided to exploit this feature 
to compute dissipation in the wall jet, using a slightly modified version of (6.2). 

From an analysis of Lawn's data on pipes, one can rewrite (6.2) as 

(C, is a universal constant.) The value of C,, from Lawn's data, works out to be 
1.45. Figure 15 shows the dissipation rate calculated using (6.3) for the station 
x/tc = 118. Unfortunately, results from other methods of estimation are not 
available for checking the accuracy of the present one. Also, detailed measure- 
ments were not made in the present investigation to gather information on the 
turbulent energy balance. But an approximate integral energy balance check can 
be made. Figure 15 also shows the distribution of the rate of turbulent energy 
production. From the figure, the rate of production of total turbulent energy a t  
the section exceeds that of dissipation by nearly 20 yo. Since the net lateral rate of 
diffusion must be zero, this excess must be convected downstream. However, 
calculation of the net rate of convection from the section indicated that it 
accounted for a negligible part of this difference. This discrepancy indicates that 
perhaps the dissipation values obtained from (6.3) are low by about 20 yo. But, 
it is possible, too, that the discrepancy is partly due to any non-axisymmetry 
present in the flow. 
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6.3. Self-similarity of the spectrum 

In  figure 16, the non-dimensional spectra of for the different points in the wall 
jet at the two longitudinal stations xlt ,  = 22 and 118 are plotted again. It is seen 
that the spectra collapse on one another in the region 5 < (yt k,) < 20, except for 
the two extreme values of 7 = 2.5 at x/tc = 22, and T,I = 0.07 at x/tc = 118. It thus 
appears that, in the above wavenumber range (except in the neighbourhood of 
the hump around yak ,  = 2), the spectrum exhibits a self-similar distribution of 
the form 

(6.4) 
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(C is a constant.) I n  fact, as indicated by the dashed line in figure 16, the similarity 
in a2 spectra extends approximately even to as low a non-dimensional wave- 
number as 0.2. Hence, spectra over most of the boundary layer scale with a single 
length scale, viz. the characteristic length scale y4 (except probably very close to 
the wall). But this is true for only the spectrum, not for the ur2, vf2 or w ’ ~  
spectra. In  the latter, self-similarity is not observed, unless one goes to the region 
of a t  least second-class isotropy. This is due to the preferential extraction of 
energy by the u component, and transfer to the v and w modes in the lower 
wavenumber regime. 

Now, for the region of --: slope, one can write 

Eq4Y+ k l )  = p”C(y$,)-i. 

Using E,z(kl) = Y)E*4Ygkl), 

and combining (6.5) with (6.3), one gets 

The constant C is not universal, and obviously depends on the scaling length 
chosen. For the present case, where y+ is chosen as the length scale, C works out 
to be 0.64. 

Substituting the numerical values of C and C, in (6.7), one gets 

~xJ+/u; = 0.292(?/~$)*. (6.8) 

The expression (6.8) is of familiar form, with the qualification that the length 
scale can be taken as y+ almost right across the wall jet. Since the distribution 
exhibits near self-similarity, it follows from (6.8) that the dissipation rate also 
would exhibit a similar behaviour. This self-similar distribution is given by that 
shown in figure 15 for the station x/tc = 118. 

7. Conclusion 
The investigation has led to the following conclusions 
(i) Axisymmetric wall jets under adverse pressure gradients exhibit a self- 

similar structure in the outer layer, provided the pressure-gradient parameter /3 is 
small. The self-similarity is observed first in the mean velocity profile. But, it 
appears to extend to the distribution of many turbulent quantities, at a 
sufficiently large distance from the slot. 

(ii) The distribution of the shear stress over the outer region of the wall jet can 
be described satisfactorily by simple, available, turbulence hypotheses. These 
hypotheses fail to describe the wall region satisfactorily, however. 

(iii) The time scales of the u and v components of turbulent velocity fluctuations 
show a very great difference between their magnitudes in regions of high shear. 
The time scale of v fluctuations appears to be the most relevant of the three time 
scales for determining the magnitude of the Reynolds stress. 

(iv) The ratio - iZ/F appears to be a strong function of the ratio of the time 
scale of v fluctuations to a typical time scale of mean shear, viz. (aO/ay)-l. 

22 F L M  71 
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from (6.3) [or (6.8)], 
which is a modified version of Bradshaw’s recommendation, appears to be 
qualitatively reasonable, though it is probably too low by about 20 yo. 

(vi) One-dimensional spectra of?  exhibit a -Q power law variation over a 
range of wavenumbers, lower than that at which the uf2, v f 2  and wf2 spectra tend 
towards isotropy. In  this range, a self-similar behaviour is observable in the 
q2 spectra in the region of turbulence production (except very close to the wall), 
if the local mean velocity B and half-width y+ are used for forming the non- 
dimensional wavenumber. In  fact, the self-similarity in spectra extends 
approximately down to yg k, = 0.2. 

(v) The rate of dissipation computed from the spectra of 

- 
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